
www.manaraa.com

Playpens for Mind Children:
Continuities in the Practice of Programming

Patricia Galloway

Like most activities, the practice of computer programming involves real
people trying to get their work done, and it has a complicated, if relatively
short, history in its modern manifestation. This article addresses some
of the early computer science discussions of programming and theories
about how it should proceed. The article closes with a discussion of the
more recent turn to so-called agile methods, demonstrating that some
of the problems and practices of computer programming demonstrate a
remarkable continuity over forty years in spite of much-promoted new ap
proaches and changes in the computing environment.

Programming computers is by far the hardest intellectual task that
human beings have ever tried to do. Ever.

—Gerald M. Weinberg, Understanding the Professional Programmer

A good process is organic, embodied in the habits and conversations
of the team. Like any behavior, you can document it, you can do your
best to guide its development, but attempts to enforce it by strict
mandate are more likely to encourage rebellion than participation.

—Marc Rettig and Gary Simons, “A Project Planning and
Development Process for Small Teams”

In our present information society, computer programmers and
their practice are at the heart of the infrastructure that supports and
constrains nearly all the information activities in which we are involved
and engaged. That infrastructure is increasingly hidden because most
people accept it as such, and yet, as legal scholar Lawrence Lessig ob
served, in the world of cyberspace it is computer code that is law. 1 For
this reason we should be interested in programmers, their practice, and
the history of that practice. It is taken for granted that programmers are
engineers or scientists, that they are always mostly in control of the work
they do, and that they are careful to make that work “correct” in some
sense. But it is not in fact clear what the status of programmers is, even
to them: that is, whether they are part of a science or a profession, and

Information & Culture, Vol. 47, No. 1, 2012
©2012 by the University of Texas Press, PO Box 7819, Austin, TX 78713-7819

www.manaraa.com

39

whether they share an ethic that will somehow guarantee the infrastruc
ture that we must perforce trust them to build.

The historical emergence of programming as a profession has been
documented.2 This article pursues a more modest goal, as it is interested
in a microhistorical fragment of programmers’ experience of carrying
out the process of programming, particularly as it is most often now
done in teams. It is in this sociotechnical context that the program-
artifact is made, and ultimately the precise way it is made is strongly
influenced by the interactions of the members of programming teams,
by the technicalities of programming languages and digital program
ming environments, and by the relationship between the programmer
and the program as creative product.

To explore the question of the individual role in the creation of a pro
gram product, I want to place a particular case in its historical context
as framed through research in the computer science literature on soft
ware engineering and software design. The case is the work of students
in an emblematic and venerable software engineering (SE) course, de
signed by one of the creators of the SE concept, at a historical moment
in the early 1990s when SE as an instrument for the control of program
ming practice was beginning to be replaced by new ideas brought in
by the growing dominance of personal computers and networking. The
ethnographic observations documenting the programming practice in
the course, collected by participant observation and including formal
interviews and documentation generated by the programming team,
were designed to observe an entire programming project from start to
finish in order to understand how programmers made programs “situ
ated in cultural systems, social relations, and institutional matrices,”
with the goal of helping to design a fully digital environment to sup
port programming work.31 have used these observations to explore the
experiential underpinnings of the creation of a community of practice,
how it developed through the construction of a local work practice, how
the students’ own situations in the relationships the project generated
influenced their work, and what agency individual programmers en
joyed in using their creativity to put their own stamp on the resulting
product. In this historical moment, we can see as under a microscope
the beginnings of the emergence of the kind of team practice that is
widespread today in the production of the kinds of software that I am
using to write this article and you may be using to read it. Like all his
torical process, it needs to be seen in closely observed moments, and I
think this case allows us to see an important moment as well as its evolu
tionary connection with what went before and what has come after.

www.manaraa.com

40 I&C/Playpens for Mind Children

Programming as “Discipline”

More than thirty years ago, in a critical monographic study of the so
cial context of com puter programming, sociologist Philip Kraft argued
that the practice of com puter program m ing was in the process of going
the way of its victims, industrial workers who had been pushed out and
deskilled by automation: “Programmers, systems analysts, and other soft
ware workers are experiencing efforts to break down, simplify, routinize,
and standardize their own work so that it, too, can be done by machines
instead of people.”4 Kraft based his argum ent on the work of Harry
Braverman and David Noble.5 He used interview techniques to gather
data on the basis of which he classified software workers, from least to
most skilled, into coders, programmers, and analysts, arguing that m an
agem ent had used canned programs, structured programming, and
“Chief Program m er Teams”—all techniques falling under the rubric
of SE—to reinforce and reproduce the deskilling process, although he
adm itted that by 1977 the process was no t complete because of the intel
lectual nature o f the work.6 Two years later Kraft repeated the claim in
an article summarizing the earlier work, although he then distinguished
“high-level program m ing languages,” rather than Chief Program m er
Teams, as the third of the routinization techniques.7

Kraft was ra ther too easily persuaded in taking as ominous warning
what we can now see as m anagers’ overly optimistic forecasts of com
plete automatization of the program m ing production process.8 More
recently, Bruce Berman has similarly erred in simply adopting Kraft’s
thesis and updating it slightly by adding a diatribe against the preten
sions of artificial intelligence research.9 Since the 1970s structured
program m ing in “high-level” or third-generation languages, dem on
ized by Kraft, has in its turn been superseded by further innovations in
program m ing technology and practice (object-oriented program ming
[O O P], or agile program m ing), yet the managerial nirvana of program
merless com puting has no t been realized—indeed, developm ent has
moved in the opposite direction.10

These alleged leanings toward routinization are part of a historical
process involving the production of hardware and software in the context
of business organizations, educational institutions, and a political econ
omy never far removed from the potential military and governmental
applications of these technologies. W hat is most im portant here, I would
suggest, is that in the course of the developm ent of hardware devices
and the software that perform s inform ation m anipulation supported by
them, the software has proved easier to adapt than the hardware, such

www.manaraa.com

41

that with time software layers have been added to perm it greater abstrac
tion in the program m ing process and indeed in the use of computers in
general; the greater the abstraction, the harder it is for nonprogram m ers
to understand what is going on. Over time, program mers have created
all these layers, and continue to do so, but the so-called lower-level work
of writing operating systems and program m ing language compilers as
well as designing graphical user interfaces is done less often. This is be
cause in a real sense it is infrastructural, whereas so-called applications
have become increasingly diversified and commodified and include not
only programs that assist in work but also those that can provide for al
most any other informational (and creative) desire. And since all these
layers remain with all their com bined complexity, and mastery of them
in greater or lesser degree is required for programmers, it has become
increasingly difficult to routinize their work.

N either Kraft nor anyone else could have forecast that computers
would multiply as they have. When Kraft originally wrote, the num ber
of mainframe computers in the world could be counted in the hun
dreds, m inicomputers were still new, and microcomputers had just
appeared on the m arket in do-it-yourself kits. Today, while the num ber
of mainframe computers has no t significantly grown, the capabilities of
m inicomputers are now surpassed by the millions of microcomputers
that are ubiquitous in business and in homes, while portable devices
m ore powerful than many personal computers—enabled by wireless
technologies and In ternet connections—are now becoming ubiquitous
as well. In many environments, the large central mainframe com puter
has also become a thing of the past, giving way to networks of personal
computers on every desk as the m odel of reticulated managerial hier
archies has collapsed into drastically flattened corporate networks and
powerful centralized com puting resources are shared via the Internet.
The Bureau of Labor Statistics’ Occupational Outlook Handbook, 2010-
2011 Edition forecasts that the occupation of “com puter software
engineers and com puter program m ers” will experience 21 percent
growth, adding 283,000 additional jobs for a total of 1,619,300 by the
end of the period 2008-18. Nor will these jobs be badly paid or poorly
recognized, for salaries in the field have steadily climbed since 1977.11
Certainly, many of the managers have become expendable; but have the
program mers internalized a discipline?

There can be no argum ent with the claim that a division of labor
that creates autocratic managers and lowly program mers as well as dom
inance-ridden hierarchies of control empties the program m ing task
of its joy and creativity.12 Nor has the conceptualization of com puter

www.manaraa.com

42 I&C/Playpens for Mind Children

programming as SE, which Kraft argued was meant to bring it under dis
cipline, gone away. Invented as a solution to the “software crisis” of the
1960s (due to a drastic shortage of programmers), SE was indeed mod
eled, as Kraft suggests, on the electrical (hardware) engineering process.
But its adoption as an ideology of control was not particularly successful
for management; huge gains in programming efficiency were not real
ized and the software crisis continued. As a popular synthesis indicates,
the faith of computer scientists in the efficacy of the original concepts
of SE for taming the complexity they faced was due to their naivete in
believing that software could be engineered like computer hardware,
when in fact it differs in fundamental ways: (1) software does not re
quire material manufacture, as it can be changed with relative ease at
any time; (2) software is evaluated by judgment and intuition; (3) soft
ware has no practical bound on complexity; and (4) software does not
wear out, so its reliability depends on the number of errors it contains
to begin with.13 Software, in other words, can be fully defined before it
is written about as well as a novel can. Just because the original notions
of SE, with its “waterfall model” of step-by-step sequential development
and its detailed management structures, were so little cognizant of the
actual character of the programming task as socially situated intellec
tual work, the kind of hard-and-fast implementations of such schemes
as Kraft criticized have turned out to be self-limiting, and students be
ing taught SE are often advised by their instructor to circumvent them:
“The waterfall model is a wonderful way to explain what happens, but
it is not a wonderful way to build a system. It is a wonderful way to or
ganize things ex post facto as though in an ideal world it had happened
that way.”14

Thus after nearly fifty years of SE, large programming projects still fail
to meet deadlines and deliver promised features, and the consequences
of software failure (i.e., Internet-wide computer-virus attacks, collapse
of the entire AT&T long-distance telephone system, failure of onboard
space shuttle computer systems, and cyberwar attacks on companies
and small countries) have become more serious in terms not only of
potential loss of profits but of loss of life. Managers still lament the same
problems of managing programming teams, even after five decades of
ingenuity have been applied to the creation of ever more supportive
and friendly programming environments, numerous evangelistically
promoted approaches to software design, increasingly micromanaged
software design schemes, and, most recently, agile programming mod
els that hand over most responsibilities to the programming team itself
but encourage adherence to a strict framework. This should not be

www.manaraa.com

43

surprising in view of the increased complexity of software, which is itself
due to an increase in the demand for an accessible, “user-friendly” com
puter environment that allows computers to be placed under the direct
control of workers.

The intellectual work of computer programming therefore re
mains intractable to routinized control.15 Steady innovation in the
field of computing makes every programming effort a new creation
and, more significantly, still leaves programmers in control of a scarce
and valuable skill. Where commercial software for any computer is
concerned, although the program becomes a prototype that is subse-
quendy commodified, its original creation remains intellectual craft
work, and upgrading and addition of new features demand more of the
same. With the explosion of the market for microcomputer software,
fierce competition for programming talent has led to the building of
corporate facilities for programmers that resemble luxurious college
campuses more than regimented factory floors, and the kind of cre
ative idiosyncrasy that characterizes the world of so-called hackers in
academic computer centers is not only tolerated in these commercial
environments but, some would say, encouraged.16 The point is that pro
grammers on the whole are not in serious danger of their work being
deadened and restrained by routine; indeed, it is clear that they are still
envied by other intellectual workers. Citing a project in which engineers
from his company—not the typically deskilled engineers discussed by
Kraft but elite computer network engineers—collaborated with the pam
pered programmers from a software company, one manager said: “Our
engineers were forced to suffer daily indignities in the face of these ob
noxiously arrogant programmers. One of my friends referred to them
as the Hitler Youth.”17 But what, then, is so special about programming
work? What insulates programmers and even guarantees them special
privileges? And has the situation changed over time?

Programming as Intellectual Work: Two Historical Views

Recognition of the special character of the intellectual work of pro
gramming has never been lacking among academic programmers and
software designers themselves. Perhaps the most often quoted book
on software engineering, written by one of the inventors of the field,
is Frederick Brooks’s 1975 book of essays, The Mythical Man-Month,18
This book is still used and referred to because it constitutes a cogent
and credible description of practice developed from actual experience
of large design projects, including one of the first widely successful

www.manaraa.com

44 I&C/Playpens for Mind Children

commercial mainframe computers, IBM System 360. Brooks was the
first to argue influentially for the idea that software teams need to be
small and autocratically managed by a creative design genius to achieve
the conceptual integrity that he saw as the only saving grace in the face
of nearly uncontrollable complexity. The book’s title refers to his recog
nition that a central problem of team programming is communication
among programmers, a difficulty that increases as teams are enlarged.
He laid down standards for team structure, software documentation,
and the principle of planning trial prototypes for discard, and much of
his thinking has continued to have relevance because he realized early
that software production was always likely to be affected by uncertainty.
His description of the “joys of the craft” contains a classic passage that
links the special nature of programming to the literary activity that has
become synonymous with creativity for modern Western culture:

The programmer, like the poet, works only slightly removed from
pure thought-stuff. He builds his castles in the air, from air, creat
ing by exertion of the imagination. Few media of creation are so
flexible, so easy to polish and rework, so readily capable of real
izing grand conceptual structures. . . . Yet the program construct,
unlike the poet’s words, is real in the sense that it moves and works,
producing visible outputs separate from the construct itself. . . .
The magic of myth and legend has come true in our time.19

Another theme here offers an important key to the unique nature
of programming: the program itself is a form of practice. Brooks even
alludes to magic, the magic of a sorcerer’s apprentice. (It is no accident
that expert programmers are referred to as sorcerers and wizards.)20
Brooks’s wizards are the elite of the programming world, however;
throughout the book his vision is phrased in terms of the single expert
programmer, and he always emphasizes the need for what he calls “uno
animo” at work in the overall design of the software project.

In 1986 Brooks updated that vision in an influential article, “No Silver
Bullet,” expanding on the imagery of computer programming sorcery,
this time mobilized against software project monsters, werewolves that
“transform unexpectedly from the familiar into horrors.”21 Hollywood
images of werewolves pursuing an attractive young woman, her hair
streaming and her gaze cast apprehensively over her shoulder as she
flees, were even used by the editors of the IEEE Computer magazine,
both for their cover art and in the text of Brooks’s essay itself, when they
reprinted it from the sober conference proceedings in which it first ap
peared.22 Brooks discussed the fundamental reasons why “magic bullets”

www.manaraa.com

45

of the past—high-level languages, time-sharing, unified program ming
environments (including many of the demons Kraft listed)—and
further proposed wonderful schemes—high-level language advances,
object-oriented programming, artificial intelligence, expert systems, “au
tomatic” programming, graphical programming, program verification,
new environments and tools, and workstations—had no t and would not
provide order-of-magnitude improvements in program m er productivity.
The key, he argued, lay in the fact that they all addressed the “accidents”
of the activity of com puter program m ing and did nothing to attack its
“essence,” which he saw as consisting of four elements:

1. Complexity: “Software entities are m ore complex for their size
than perhaps any other hum an construct because no two parts
are a like.. . . In most cases the elements interact with each other
in some nonlinear fashion, and the complexity of the whole in
creases much more than linearly.”

2. Conformity: “Much of the complexity . . . is arbitrary complexity,
forced without rhyme or reason by the many hum an institu
tions and systems to which [the program m er’s] interfaces must
conform .”

S. Changeability: “The software product is em bedded in a cultural
matrix of applications, users, laws, and machine vehicles. These
all change continually, and their changes inexorably force
change upon the software product.”

4. Invisibility: “The reality of software is not inherently em bedded
in space. . . . [W]e find it to constitute no t one, bu t several, gen
eral directed graphs superimposed one upon another. . . . This
lack not only impedes the process of design within one mind, it
severely hinders communication am ong minds.”23

The com puter program m er was here seen as subject to the irrational
requirem ents of “hum an institutions” and change in the cultural envi
ronm ent of computing. Brooks’s prescription to solve these problems
had four parts, some of which echo Kraft’s concerns, some of which
point in a different direction:

1. “Buy, d o n ’t build”: A mass m arket for software would lead to the
possibility of making m ajor economies.

2. Requirements refinem ent and rapid prototyping: Focus on
communicating more effectively with users to understand their
requirem ents and offer them working prototypes for criticism
and usability testing before proceeding to full-scale development.

www.manaraa.com

46 I&C/Playpens for Mind Children

3. “Grow, don’t build”: Brooks heartily recommended incremental
development through getting small parts of a system running
early, then “growing” the rest of the system around them, stating
that “enthusiasm jumps when there is a running system, even a
simple one.”

4. Great designers: “Whereas the difference between poor concep
tual designs and good ones may lie in the soundness of design
method, the difference between good designs and great ones
surely does not. Great designs come from great designers.
Software construction is a creative process.”24

This last item, the great designers, echoes Brooks’s earlier emphasis
on the notion of coherent, one-mind design for large software projects;
it is still a notion that depends upon powerful solo designers with great
authority in enforcing their vision. It is a notion that is also reflected
in Brooks’s vision of the development of computer science through
“driving problems” adopted from other fields.25 But we also see here
several crucial insights about the need for both programmers and
users of their products to interact directly with operational programs
in aid of communication between programmers and users and among
programmers themselves.26

At about the same time, the Danish computer scientist Peter Naur
(who as the creator of the first of the modern general-purpose program
ming languages, Algol 60, could be said to bear some responsibility for
the “structured programming” trends of the 1980s) expressed some
additional key ideas regarding the programming process itself and the
relation of the programmer to the program.27 Naur’s concept is very
different from Brooks’s in some important respects, as it focused on
democratic teams of programmers and came from a Scandinavian con
text of explicit concern both for workers whose work would be affected
by computer implementations and for the social situation of program
mers themselves.28

Based on his observations of actual programming and program main
tenance in both academic and commercial sectors, Naur concluded that
programmers responsible for the development of large programs de
veloped “a certain kind of knowledge” through their close connection
with their programs which enabled them to carry out maintenance and
the ongoing changes that are inevitably required in software systems.
To characterize this knowledge Naur adopted Gilbert Ryle’s notion of
a “theory,” by which he meant “the knowledge a person must have not
only to do certain things intelligently but also to explain them, to argue

www.manaraa.com

47

about them, and so forth.” “Theory” in this sense is explicitly practical
knowledge, depending on “a grasp of certain kinds of similarity between
situations and events of the real world,” which is “the reason why the
knowledge held by someone who has the theory could not, in principle,
be expressed in terms of rules.”29 Naur argued that such a theory must
transcend what may be explicitly embodied in documentation for the
program, because it (1) includes the programmer’s knowledge of “how
the solution relates to the affairs of the world that it helps to handle”;
(2) includes the programmer’s intuitive justification for every part of the
program text; and (3) includes the programmer’s ability to modify the
program “so as to support the affairs of the world in a new manner. . . .
It only makes sense to the agent who has knowledge of the world, that
is the programmer.”30 Clearly, Naur is talking here about familiarity
not only with the program code itself but with socially constructed
knowledge. Without this kind of knowledge, Naur argued, continuing
maintenance of a functioning program becomes prohibitively expensive
and eventually impossible. This is vividly expressed in Naur’s view of the
life cycle of a program:

A main claim of the Theory Building View of programming is that
an essential part of any program, the theory of it, is something that
could not conceivably be expressed, but is inextricably bound to
human beings. It follows that in describing the state of the program
it is important to indicate the extent to which programmers having
its theory remain in charge of it. As a way in which to emphasize
this circumstance one might extend the notion of program build
ing by notions of program life, death, and revival. The building of
the program is the same as the building of the theory of it by and
in the team of programmers. During the program life a program
mer team possessing its theory remains in active control of the
program, and in particular retains control over all modifications.
The death of a program happens when the programmer team pos
sessing its theory is dissolved. A dead program may continue to
be used for execution in a computer and to produce useful re
sults. The actual state of death becomes visible when demands for
modifications of the program cannot be intelligently answered.
Revival of a program is the rebuilding of its theory by a new pro
grammer team.31

At the heart of Naur’s argument is the justification for treating program
mers well in the workplace and ranking their skills high. Naur’s notion

www.manaraa.com

48 I&C/Playpens for Mind Children

of democratic program m ing teams is very different from Brooks’s “great
designers,” bu t I have explored both points of view at such length be
cause, in spite of their philosophical differences, both ways of thinking
about the program ming task reveal the recognition by com puter pro
grammers and program m ing theorists that the specialness of com puter
program m ing lies in the actual practice of program m ing and in the rec
ognition of the program itself as practice and as an entity.

Programmers at Work: Fields o f Dreams

This study makes use of observations of the program m ing practice of
small teams of advanced undergraduates and graduate students taking
an SE course in the early 1990s, situated temporally at a point when strict
disciplining of the program m ing task was still expected for commercial
contexts bu t beginning to be affected by some of the innovations m en
tioned above. The course, originally designed by Brooks, was intended
to give students a taste of team program m ing in which they attem pted
to fulfill the wishes of a Client (a faculty m em ber with a program m ing
task that needed doing) under the supervision of a Boss (the course
instructor, concerned with reinforcing lessons from the class and facili
tate access to scarce resources) and with feedback provided by a Review
Committee (a panel of graduate students from an advanced program
ming m anagem ent course). Within the team, the only assigned roles
were those of Producer (in essence, the m anager of the team, charged
with obtaining resources and keeping the team on a schedule) and
Technical D irector (responsible for the overall technical excellence of
the result); remaining members of the team were Programmers.32 The
project had to be com pleted in a semester, and it had to be a project
that dem anded significant effort from the students. Experience of the
course conferred on students a share of symbolic capital that was highly
negotiable in the jo b market, bu t it was also sought out simply because
it was believed to incorporate the best and most programmer-friendly
aspects of the SE model:

PROGRAMMER P: For a long time I had heard about this class be
ing really hard. . . . I was really looking forward, though, to working
with the group and getting something really big done. . . . [T] hey
want you to do something that at least appears to be useful.

PROGRAMMER E: The purpose of the course I saw was to have a
project, a product that you take from start to finish. . . . My hope

www.manaraa.com

49

was to gradually do the design, and build up, and then work on the
project, and then finally have a nice, um, steady collapse, I guess,
to the end.33

T hroughout the semester the students were observed by a team of
anthropologists, who collected extremely detailed information, includ
ing audiotapes of formal and informal meetings, program ming sessions,
and interviews, as well as drawings, printed class submissions, program
printouts, and other artifacts produced by the team in the course of the
process.341 examined the activities of one specific team in detail for this
article, although I reviewed the notes and artifacts relating to observa
tions of o ther teams for context and comparative purposes. Finally, I
viewed the program produced by the team in operation while I con
ducted an informal interview with one of the team members.

In the still-sparse literature on the empirical study o f programming,
complaints have been heard that most of the hard data available are
based on student program mers and are inapplicable to real-world pro
gramming practices by professional programmers.35 W hat little evidence
there is has been gathered for the purpose of improving program m er
efficiency, and until recently there has been litde concern with the
social aspects of the activity or the intrinsic importance of its social situa
tion. Thus the original project constituted an im portant contribution to
understanding real activities and attitudes of program mers confronted
with fitting into specific regimes of practice. For me these rich data,
reliably gathered and well docum ented, constituted a window into a
specific m om ent and provided the opportunity for further investigation
of program m ers’ engagem ent with their medium.

I selected a single particular team for study here because most of its
members, all graduate students, had had prior professional program
ming experience in a commercial setting. For this reason it was possible
to com pare observations of the team with at least one other contem
porary full-project study of professional software designers to get a feel
for its similarity.36 The specific social and professional situation of the
program ming team was also very im portant to the way they proceeded
and to their relationship to the pedagogical context. The original in
vestigators noted that this particular team essentially disregarded the
context and proceeded with what seemed to be their own goal of achiev
ing an aesthetically pleasing and technically sophisticated program .37
This conclusion was soundly based on the testimony of the program
mers themselves:

www.manaraa.com

50 I&C/Playpens for Mind Children

PROGRAMMER P: I knew I had to take the class, so instead of
making something boring and stupid that I’d never use again, why
not make something that was neat and that people would say, wow,
you made something really neat and something useful, too, some
thing that would help me in my work.

PROGRAMMER T: I wanted to have a program that would let
me . . . [do] some of the stuff that I, I felt like doing.. . . So I guess,
uh, I guess that, I mean, pa . . . a big part of the project was my idea
to begin with, and then we went and found [the] Client to be will
ing to . . . to do it for us.

PROGRAMMER C: Well, we wanted to make a cool [program]. We
got together before [the course] started, we were [unintelligible]
team . . . so we were all pretty fired up about it.

Although it was not unheard-of for projects to be so arranged in ad
vance, clearly this project functioned from the first much more like an
in-house industrial programming project than did the others, which
were picked from a list by individual students and thus were grouped
by chance. The members of this team, on the other hand, were able to
make use of the project for their own purposes because their activity was
also strategically situated in a pardy congruent but much larger field.
Three of the four members of the team were or had been research as
sistants in the same specific laboratory setting for which the program
they wrote was designed to serve as a tool, and their Client was not only
a principal researcher in the laboratory but a recognized authority in
the field, so the team’s efforts could be understood as well as sanctioned
by him. The program was an original effort, something not previously
attempted by anyone in the world, and the programmers were aware of
this fact.38 The team was not paid for its work, but if they were success
ful, they stood to acquire the additional social capital of adding to the
distinction of the laboratory. Their program was demonstrated effec
tively to several visiting dignitaries toward the end of the project and was
subsequently made a feature of the laboratory’s exhibit at a major re
search conference. The published proceedings paper is still cited twenty
years later.39

The laboratory setting was also significant because of the specific
tools that it provided the programmers to work with. This included both
state-of-the-art hardware and a set of software tools for interfacing with
the hardware that the programmers could take for granted; the program

www.manaraa.com

51

they wrote drew upon the software support of libraries of routines and
procedures that had been developed in that laboratory. In fact, some of
it had been worked on by some of the programmers themselves, giving
them the benefit of the kind of special knowledge Naur discussed.

Thus the team saw their project not chiefly as a class project but as
one that would at the least be used in an ongoing research setting and
that at the most might receive favorable national notice. In one respect
this can be seen as setting even more stringent requirements for their
work, although the requirements would be of a specific kind: elegance,
economy, and modifiability. They could assume that their peers—and,
even more to the point, their superiors—might actually see the program
code they wrote or at least that they would, on viewing the program, be
able to “see through” the interface to understand the success or failure
of their implementation even without seeing the code. The levels of skill
used here were therefore certainly higher than are called for in the aver
age real-world programming task. The programmers were in no doubt
themselves about this:

PROGRAMMER P: Our project, we four, I hate to say it, but we
were highly qualified to work on it. That’s one of the reasons why
it was such a resounding success, was because the right people for
the right job is what you need. . . . We were good. We were some
of the best people, like, around, I wouldn’t say in the world, but
[at our institution] we were some of the best people that were
qualified for that.

This team was in a peculiar position in relation to their Boss, both
because they were much more skilled in the specialized area in which
they worked and because of their special relationship to the work of
the laboratory, to which he was a relative outsider. This played itself out
in a relationship that developed much more as peer-to-peer than the
relationship developed by the Boss with other teams. The following con
versation took place during the last formal meeting with the Boss:

BOSS: I think this one is real exciting.
[Programmers brag about reactions of others and their plans to
work with the program after class is over.]
PROGRAMMER P: Yeah, I think it’s going to [be demonstrated at
a computer conference] and it’s going to be used to impress some
people there.
BOSS: Real good. Put a footnote on the handout that says Boss .. .
on it.

www.manaraa.com

52 I&C/Playpens fo r M ind Children

The laboratory connection and the program m ers’ awareness of work
ing on an unusual project of potential significance and visibility were
clearly fundam ental to the form ation of group identity and loyalty, in
spite of some internal struggle that em erged toward the end of the proj
ect. As the program began to be demonstratable, both the Boss and
the Client tried it out, and the Client even invited others—em inent re
searchers for whom the Client himself had respect—to look at it:

PROGRAMMER T: [Visitor 1] and [visitor 2] came and they
seemed pretty impressed and everything and then they left. Then
[visitor 1] came back. Like you know a m inute later he comes
back and says, “Well you know I did something like this and this is
what I had.”

Group members then began to talk up their success as they worked
against time to complete the project to turn in on the last day:

PROGRAMMER P: Everybody has been telling me [unintelligible],
really everyone has been telling me that they thought our project
really is taking off.
PROGRAMMER T: I ’ve gotten quite a few comments like that
too. . . .
PROGRAMMER P: W hat did [visitor 3] think? H e’s more impor
tant than the o ther guy.
PROGRAMMER E: He said it’s the b e s t . . . project h e ’s ever seen.
PROGRAMMER C: O r h e ’s seen in years. T hat’s what he told me.
PROGRAMMER P: Oh that’s fantastic.

Programming as Process: Programming Models and the Timeline

I have already m entioned the classic, orderly, sequential, “water
fall” m odel of the idealized software engineering process. In its various
manifestations, the model generally maintains that there is an orderly
sequence to the design and program m ing of a software system, and that
sequence consists of the general steps of problem definition (require
ments analysis), problem solution (program design), im plem entation
(program m ing), testing (debugging), and maintenance. (Note that an
informal version of this model has been internalized in the first cita
tion above, from Program m er E, who had had prior experience working
on large commercial projects characterized by a degree of division of
labor.) The model is so called because each step must be completed

www.manaraa.com

53

before the next step can be undertaken. It is recognized that each phase
may go through several iterations of “stepwise refinem ent,” whose gen
eral guiding principle is to break down the problem into smaller and
smaller fragments until it has been satisfactorily solved. And there is a
perennial discussion am ong com puter scientists and managers about
how m uch time each phase of the process should take; Brooks favors
one-third planning, one-sixth coding, one-quarter com ponent test, and
one-quarter system test, or fully half the time to be spent on system
testing .40 In practice, however, this ideal is almost never met; hence, soft
ware engineers are frequently advised to plan in advance for deliverable
subsets of promised systems in order to keep customers happy while the
inevitably delayed testing is com pleted .41

O ther researchers, bearing the effects of the SE model in mind, have
made several im portant observations about these program ming teams.
The researchers’ studies focused upon the program ming process as
socially situated action, and they have been particularly helpful in iden
tifying several aspects of the process neglected in m anagem ent-oriented
studies that pay attention only to how well or ill programmers are m eet
ing their SE-dictated milestones. First, the researchers noted that the
program mers were no t motivated throughout by the monolithic goals
of the bureaucratic SE m odel for solving problems and completing
product logic but rather pursued individual and group goals, such as
institutional rewards and struggle for personal power in the context of
the program ming task. The team discussed here was on that measure
the most professional of the teams observed in that their concern with
product logic governed more than three-quarters of the time spent .42

Second, the researchers observed that during the course of the process
itself the team members as individuals and the teams as collectivities
developed their own, sometimes changing perspectives on the purpose
at hand, constructing these perspectives in the undisciplined space still
no t yet “tam ed” by the “science” of com puter program m ing .43

These conclusions have been echoed from another perspective by
a contem poraneous report of an observational study of a professional
software design team .44 This team, which carried out design only, no t
programming, was not constrained to any particular development
methodology, but they were working in an OOP environm ent on an
infrastructural project. Diane Walz and her colleagues reported that,
during the course of the design work, which lasted four months, there
was a shift in perspective. At the beginning, the designers worked to
gather knowledge they would need to carry out the design; they then
moved on to establishing in some detail the users’ requirem ents for

www.manaraa.com

54 I&C/Playpens for Mind Children

the system; finally, the designers shifted to a concentration on specific
design approaches and the establishment of a concrete design suitable
for implementation. Of particular interest, since this study does not pay
much attention to the noninstitutional purposes of the designers, is its
observation of the phenomenon of “shutdown”: the designers simply
ceased to specify requirements further, even though requirements were
not completely clear, at a point about halfway through the whole proj
ect, simply going on to the next phase with what they had in hand. The
researchers noted that this phenomenon has been observed before in
other such studies and that it tends to happen when team members be
come aware that only half the allotted time remains. We will see that it
appears in the project studied here as well.

The progress of the student project was regulated by an externally
specified timeline marked off by required deadlines for the comple
tion of specific documents and their review by a Review Committee.
The specific documents were a Project Definition, a User Manual, and
an Implementation Manual, and final versions of the latter two had
to be submitted with the completed project at the end of the course.
The Project Definition was due three weeks after the beginning of
the course, and the User Manual was due two and a half weeks later;
the Implementation Manual was due three weeks after that, but a
two-week spring break intervened. About five weeks later the finished
program had to be demonstrated and presented formally, and a week
after that the program and all final documentation had to be turned
in. Although the students were encouraged to develop additional mile
stones for themselves, and they made periodic short-term efforts to do
so, clearly the externally imposed milestones were what really drove the
activity on the project. In this it was more constrained than projects car
ried out by contemporary professional programmers, who in cases of
schedule slippage are sometimes able simply to reschedule.

The students were similarly encouraged to begin their work by
gathering everything they needed to know to do the project. It is a re
markable commonplace of the computer programming field, driven by
the speed and ubiquity of change, that its participants expect to have
to learn new things that they do not already know for every project—
and this is not limited to domain knowledge of the application field.
Although in the business world an effort is made to put together pro
gramming teams with the requisite experience and skills for particular
projects, it is assumed not only that additional skills may be needed but
that the programmers will be able to master them in what may seem to
the outsider a very short time.45 This mastery of a set of learning skills

www.manaraa.com

55

Ideological (Software Engineering) Model of Work:

Group # 1 Trajectory:

Jan 15 Feb Mar Apr May 1

1 2 3 4 5 6 7

Project Milestones:
1. Project team assignments (January 22)
2. Project Definition due (February 7)
3. User Manual draft due (February 26)
4. First class presentation (March 7)
5. Implementation Document draft due (March 21)
6. Final class presentation (April 24)
7. Final product delivery (May 1)

Institutional Demands
Product Logic and Rewards Struggle

Figure 1. Timeline and observed group activity frame deployment (derived
from Holland, Reeves, and Larme, “Constitution of Intellectual Work,” fig. 3).

is at least part of what full qualification as a program m er means, and it
reinforces the craft quality of the work.

The student program m ing team was no exception, in spite o f the
fact that they felt themselves so well qualified. Their first formal project
meeting, held about a week after the start of the course, consisted of
a detailed presentation by the Producer and Technical Director of the
program ming environm ent they would be using and the existing pro
gram libraries they could draw upon for low-level routines. In addition,

www.manaraa.com

56 I&C/Playpens for Mind Children

they attempted to settle on standards for their own practice as a team,
including the use of a version-control repository that would enable the
whole team to work simultaneously on various parts of the program
without getting in each other’s way. A few days later they visited an
other installation to work with a program somewhat similar to the one
they planned to write, and a few days after that their Client introduced
them to another expert with whom they were able to discuss design
ideas. They then prepared and submitted the design document to their
Review Committee; several days later they attended its review and then
revised the document for formal submission in class. During this period
it was clear that the team was functioning primarily in tutorial mode; al
though they did discuss their own ideas (and, as we have seen, they had
already been discussing their own ideas for some weeks before the class
began), they concentrated primarily upon gathering ideas and informa
tion from others.

The next phase of the process might be characterized as brain
storming, although certainly it was the case that nearly every meeting of
the team was characterized by dialectic interchanges. Specifically here
their work was focused initially upon the functions the program should
incorporate, which were discussed generally from the point of view of
their external appearance to the user of the program but which could
quickly veer off into more detailed technical issues. A few days into this
period, in a regularly scheduled meeting, they were asked to provide the
Boss with an informal design document outlining the “guts of the pro
gram” the following week. Although none of the meetings that followed
during that week were recorded, it was remembered by the team as “the
week that we met tons,” and the artifacts they produced during these
meetings portrayed detailed work on both the external interface be
tween the program and the user as well as details of program internals:
logic, interfaces with libraries, data structures, and other basic technical
matters of the kind that the Boss had requested.

After another week of similar activity the User Manual was submit
ted to the Review Committee along with a set of time logs that were
required to be kept as part of the pedagogical effort to develop inter
nal discipline. Dorothy Holland and James Reeves have shown that the
programmers ignored the intent of this requirement, using the after-
the-fact preparation of the logs as an exercise in team memory. 46 It is
clear, however, that the episode also helped the team create a commu
nal memory and forced them to situate themselves on the timeline, thus
establishing a perspective on the work they had carried out to that point.

www.manaraa.com

57

This became especially clear as the team worked through the follow
ing week leading up to spring break, when they began to develop an
urgent desire to have some kind of skeleton program running before
the break. Part of this motivation was certainly due to the deadline for
the Im plem entation Manual, which was due a few days after the break,
since most of the team members were planning to take at least some va
cation time. U nder this specific pressure (the Im plem entation Manual
was to contain the technical details of the program logic and its ma
chine implementation; as a docum ent its purpose was to provide the
information necessary for o ther programmers not familiar with the pro
gram to maintain or modify it) , the team was moving to what I would
call its first shutdown phase. That is, they were trying to make the major
im plementation decisions that they would put into practice thereafter,
and they were trying to im plem ent and run enough of their prototype
to be sure that their design could be made functional as a program.

After the Im plem entation Manual was submitted, the team went into
a full-time coding mode, and two weeks later they were able to dem on
strate the program for the Boss. After this first dem onstration, the team
focused individually on several of the foundational elements of the pro
gram. After a second dem onstration for the Client a week later, the team
began to be concerned especially with integrating the parts of the pro
gram to work together. As the team moved toward a “code freeze” in two
weeks, timed to ju st before the formal presentations, integration became
their most im portant focus, and they were able to achieve an impressive
presentation because they focused carefully upon the complexities of
the presentation setup as well. Once the presentation was successfully
completed, the team spent their last week of formal work improving the
program and preparing the docum ents for final submission.

Programming as Technical Activity: Communicating Technically

Clearly this sequence of activities shows that members of the program
m er team discussed here were constrained, as all groups working on
time-limited tasks with external supervision are, by their circumstances.
These circumstances forced them to carry out tasks they thought were
pointless, to do things in what they viewed as less than optimal ways,
and to work harder than they sometimes liked. W hat was especially
striking here, in view of the arguments that have been put forward by
Brooks, was how the “bandwidth problem ” played itself out. It has been
argued that one of the m ajor sources of overhead in group activities in

www.manaraa.com

58 I&C/Playpens for Mind Children

general is the attainment of sufficient quantities of what John B. Smith
refers to as “shared intangible knowledge” for the group to function ef
fectively.47 Computer programming carried out as a decomposed task,
with the assignment for different members of a team to make differ
ent parts that must interact, is an especially emblematic example, and
the difficulties of this communication task lie at the heart of Brooks’s
“mythical man-month.”

Programmers agree that in an ideal world all programs would be
written by a single person, precisely because it is so difficult to estab
lish the required level of communication, but usually time constraints
or sheer complexity require that a team undertake the task. Although
commentators on this problem frequently write as though they thought
programmers have somehow to communicate to each other every
thing they have learned since birth and have no external physical and
social world they can mutually reference, the task of arriving at even
the smaller body of knowledge that constitutes a problem domain is
not trivial, and it accounts for the “high-bandwidth” methods of com
munication frequently used not just by programmers but by many
knowledge workers: drawings, enactments (e.g., Holland’s “air demos”),
and imaginary narrative scenarios. The whole beginning, tutorial part
of the programming team’s task, in fact, can be looked upon from the
engineering point of view as establishing a store of “shared intangible
knowledge.” Team members made copious use of whiteboards for draw
ing diagrams of program structures as they agreed on all kinds of basic
conventions, including even how they liked to use white space in the
layout of programs on a page. They carried out information-gathering
tasks, and they talked interminably about various programming conven
tions to establish shared understandings.48

Yet they did not even try to share everything, because they didn’t have
to. They depended upon one another’s expertise, which was established
in the first weeks through their exploratory discussions, and they espe
cially depended upon their mutual acquaintance with and preferences
for not only programming techniques but also a world of existing pro
grams that served them much as literary intertexts. This was particularly
evident when individual programmers’ allegiances led to a clash of cul
tures. The following example comes from an interview, but the attitude
was played out throughout the course of the project as the programmer
in question continually positioned himself as the user advocate:

PROGRAMMER C: I think that most computer scientists really
don’t care about user interfaces at all, I mean, they want code that

www.manaraa.com

59

works, that does something, and user interfaces are like, you slap
it on at the end, especially in environments like UNIX where you
can make any text interface that you want that’s as hairy and mo
ronic and non-intuitive, and as long as it gets the job done UNIX
heads will love it because it works, and it’s just as arcane as every
other UNIX program, whereas I, someone who’s in love with the
Macintosh interface and the Macintosh philosophy . . . I think the
user interface is a lot more important than most CS people think.49

Other programmers, throughout the course of the project, focused
positively and negatively on specific features of programs they had
seen or used when talking about features they wanted to add to their
own programs.

Programming is unique among engineering disciplines in that
programmers have at their disposal an especially powerful means of ex
ternalizing their thinking: they write program code to embody it.50 As
Holland and Reeves have observed, “While [software] engineering talks
in terms of inanimate objects, programs behave like agents. ” 51 Thus,
if their authors have not succeeded in interacting effectively, the parts
of a decomposed program will not do so either, and the program will
not run or will crash. This absolute desideratum is so important to the
programmers themselves that exponents of the SE model inevitably fail
when they try to persuade programmers to design completely before
they code.52 The team observed here began talking about actually writ
ing code as their tutorial period ended, before they had even finished
revising their Project Definition, and were supported in this decision by
the Boss:

PROGRAMMER P: I think that we’ve found at least two solutions
that are worthy of investigation. And I think we need to do a little
bit of experimental code before we . . .
BOSS: Okay, watch out that in dealing with that you don’t wind up
with a nasty NP-complete problem of some sort.53

In fact, anyone listening to the talk of programmers involved in pro
gramming will have little doubt of the at least figurative agency of the
programs, since programmers habitually talk about them as though
they were alive. Sherry Turkle has spoken in psychological terms of a
computer as a “projective medium” or a “transitional object” for a pro
grammer, but she overlooks the fact that in a very real sense the program
is active as the programmer’s ally in the programming task.54 Because
the program does behave, and its behavior has real effects in the world,

www.manaraa.com

60 I&C/Playpens for Mind Children

it is not just a way of speaking to refer to the program in behavioral
terms. From the beginning, long before having written one line of code,
the programming team used vivid images to refer to their program’s be
havior and indeed to begin to outline the behavior they expected it to
have at various levels of detail:

PROGRAMMER P: The main part of our program, um, we should
think of it as, as waking up in an environment like that. Our pro
gram wakes up in a [software] environment that has already started
and . . . then as soon as our important code gets called, you know,
we [the programmers personified in their program] toss up our
[tools] and other things and let you [the user] start working.
PROGRAMMER T: You know, they [the user] just call some spe
cialized routine that we wrote that would just look at that, that
information we saved and say, “Oh, they want to get to arm rota-
don.” And so then it would look up arm rotation in the table and
say, “Oh, it’s in structure body number, you know, number 5.” And
so it would step through and return that corner so that they could
actually use it.

These ways of speaking are metaphorical and subject to error until
they begin to refer specifically to observable, running programs, and
programmers’ awareness of this problem is reflected in the instinct to
“go to code” as quickly as possible, a practice appreciated by Brooks.
This example of an exchange between one programmer carrying out
ordinary tasks and the Producer trying to pursue the orderly SE model
was taken from just after completion of the Project Definition. The Boss
has heard it all before:

PROGRAMMER E: I really don’t see why we’re talking about this
now. . . .
PROGRAMMER P: . . . [I]f somebody just implements whatever
they feel like, everybody else is going to spazz if it doesn’t react
correctly. I mean, I’m willing to, I’m definitely willing to make up
[unintelligible] as long as we say do it now. .. .
PROGRAMMER E: Then why are we even having a meeting at
this point? We can just implement the stuff we’ve already decided
upon, and then, you know, it could be this problem will clear itself
up after we [unintelligible].
PROGRAMMER P: Right now I’m very skeptical of that. That’s
what this week is for. Deciding what we’re going to, what we’re go
ing to implement before we do it.

www.manaraa.com

61

PROGRAMMER E: Okay, so, yeah, let’s just say we decide all this
stuff and then the first day we try to actually write some code, we
find out that everything we decided is completely void and we have
to go down [unintelligible] trash, and then we’re screwed.
[Shordy afterwards the Boss arrived for a scheduled meeting.]
BOSS: Sounds like business as usual, [laughter]
PROGRAMMER P: Well, what we’ve been doing for the last week is
trying to work some more on planning the details.. . . And coming
up with the exact details has revealed the fact that we’d all built up
different pictures in our mind of exactly how it’s going to work,
[laughter]
BOSS: Not surprising.

Reflecting on this period of the work after the fact, the Producer clearly
expressed the attractions of programming as against planning:

PROGRAMMER P: This was such a big project that there was tons
of stuff to figure out and we eventually got sick of trying to figure
everything out before we even went near the computer. We wanted
to get a little bit of stuff up and running and get a feel for what
would work well, and that was a good idea, but then once we got it
up and running it was starting to work and we got a feel for how it
worked, we just kept programming. . . . I think the other guys basi-
callyjust wanted to jump on the computer and type a whole bunch
and, you know, let’s just get it going and make as much progress as
we can really fast.

The team faced several problems due to communication failure,
some minor and at least one major, during the course of their work.
Nine weeks into the project, after the Project Definition and User
Manual documents had been prepared for the Boss but before any part
of the program had successfully run, nearly a whole project meeting was
devoted to mutual clarification of the programmers’ understandings of
each other’s terms. This effort, probably prompted by some work being
done on the Implementation Manual, resulted from two programmers’
having discovered, in talking informally about the pieces of program for
which they were responsible, that they were using two different terms
for the same concept:

PROGRAMMER P: So, that’s a group for me. What I’ve been call
ing it is an object, and so when E and I talked it’s been a little
difficult. . . . So now I will call it a group. . . .

www.manaraa.com

62 I&C/Playpens for Mind Children

PROGRAMMER E: Mainly, we all knew what we were talking about
but we used different terms for them, especially in the manuals.
PROGRAMMER C: Uh-huh. Yeah. Well, I just got finished doing a
successful compile of the thing and after this is over I can maybe
go show you what, see if it works.

A similar example arose dynamically, during a meeting, as late as the
code freeze phase at the end of the project. Here the internal complex
ity of the parts’ interaction obscured the action of each part so that
the problem could not be discovered from observation of the program
alone. As one programmer talked his way through the operation of his
part of the program, another realized that a misunderstanding had de
veloped about a data hierarchy:

PROGRAMMER T: You see what I’m saying? For those times when
you don’t want to delete everything, when you want to leave them.
PROGRAMMER E: Oh, you’re talking about deleting the child.
I’ve been talking about the parent.
PROGRAMMER P: Well, let’s draw a picture.
PROGRAMMER T: I’m talking about the . . .
PROGRAMMER C: I thought he was talking about the parent, too.

The building of shared knowledge lasts throughout the duration of
a programming project, and it consists of understandings constructed
in the social world of the programmers and their program, creating
Naur’s theory as practice. That this “feel for the program” cannot just
be reconstructed from documentation was well expressed by the pro
grammer serving as Producer when, during the formal review of the
Implementation Manual, a committee member made him aware of
some failings of the manual:

PROGRAMMER P: I guess someone would, like for the next . . .
class if they were going to use this, I would guess they would read
the user manual, go play with it for a while, and so then they un
derstand the concepts of hierarchy and they understand that there
is a [program object] there. And then they would read this and
find out how we implemented the [object]. . . . Now unfortunately
it’s almost mandatory that a person reading this know something
about hierarchical, graphical databases. . . . So come to think of it,
if this is the first time the person has seen something like this . . .
then I don’t think that this will cut it.

www.manaraa.com

63

During the creation of a program, details can become very fluid on
a day-to-day basis as the program takes shape, such that programmers
begin to depend more upon the program’s behavior than upon explicit
knowledge of the code that causes it. A good example comes from one
event during the last observed meeting when one programmer asked
another about a minor feature in a part of the program he had written a
month earlier:

PROGRAMMER C: I have one question and that is about the X
and Y events. If your X and Y just are exactly the same except X is
without the mouse button pressed, right?
PROGRAMMER T: I think so but I haven’t looked at the code
lately.
PROGRAMMER C: I think that’s the way it works. You don’t want
to X event if the mouse button’s pressed.
PROGRAMMER T: I’ll have to look.

The precise details of the program as code have given way to the pro
gram as agent.

It is difficult to observe the process by which this happens, because
most of the dialogue between programmer and program takes place
interactively, at a computer terminal, and if the programmer is using
a sophisticated, integrated programming environment with built-in
debugging aids, the program will no sooner offer evidence that some
thing is wrong than the programmer will change it, sometimes in so
rapid a flow of interaction that the program seems literally to be evolv
ing smoothly. Therefore, the best examples of this sort of thing are the
instances in which programmers find themselves observing a behavior
that they didn’t expect to see, when the program-agent demonstrates
its independence.

Holland and Reeves have cited one instance observed during a
programming session when a programmer working with two others,
on separate workstations but in the same room, started to accuse the
others of having caused a strange effect that he didn’t think he had pro
grammed, and the three together discussed the possibilities until they
came up with a reasonable one.55 A similar situation arose during the
rapid early evolution of the running program:

PROGRAMMER C: You can tell if you’re going to select an old
one ’cause it’s highlighted.

www.manaraa.com

64 I&C/Playpens for Mind Children

PROGRAMMER P: Well it’s gonna . . . I, I got that highlighting
word yesterday, but then today I did something, highlight’s gone.
But I know the routine works, ’cause yesterday it was working
pretty fast.

Unpredictable effects were still happening as the programmers were
completing the integration of the parts of the program, preparing for
the code freeze prior to the formal demonstration:

PROGRAMMER E: Remember you were commenting on the fact
that when you were creating triangles and you picked the color
your last selected vertices went away?
PROGRAMMER C: Yeah, how does that happen?
PROGRAMMER E: I was thinking about. . .
PROGRAMMER T: Oh, that’s because .. .
PROGRAMMER C: As soon as you click a color it sends an off to
the triangle. Do you think it would screw anything up if [unintel
ligible] the long command did not send an off event?

Elere the programmer who actually had the original question now has
enough information about the other parts of the program to request
a remedy from the programmer whose program’s behavior is causing
the effect.

Programming as Social Activity: Romancing the Program

This last example brings up perhaps the most interesting aspect of
computer programming, the one most resistant to “rationalizability”:
the fact that the programmer, in ways that Naur’s concept of theory
as practice suggests, retains a kind of ownership of or bond with the
program he writes that is very difficult for another to reconstruct or re
create because it is part of the process of what Brooks calls “growing”
programs in the highly interactive settings of programming teams using
high-tech development tools.

The theme of ownership began to emerge in the programmer team
meetings from the time when actual programming started during or just
after spring break. The programmers began to speak on behalf of the
portion of the program for which they were responsible, as in this ex
ample, when one of them refused to make decisions regarding other
segments of the program:

PROGRAMMER P: That’s actually outside of my domain. . . . You
guys can do what you want.

www.manaraa.com

65

Later in a review meeting he refers questions from the reviewers to an
other programmer, counting on their understanding of this as not just a
case of passing the buck:

PROGRAMMER P: Good question. The member of our group who
wrote a lot of this stuff we’ve been talking about isn’t here. . . . T is
the one who did the [program part].

Toward the end of the project, in the intense period of work that pre
ceded the code freeze, it was necessary to redistribute some of the
tasks so that the project would be completed on time. Since by this
time the personal attachment the programmers had invested in their
code matched the deep knowledge they had of the parts they had
been working on, the Producer and Technical Director discussed the
reapportionment of tasks with evident considerateness:

PROGRAMMER P: Well, the thing is, I’m worried about piling too
much on E too, but the thing is he’s the one who’s thought the
most about how those commands would work.
PROGRAMMER T: Well, should we give X and Y to someone else?
PROGRAMMER P: Okay, how about then C gets X and Y. I think
that would work out okay. He’s been working with coordinate sys
tems and stuff. . . .
PROGRAMMER T: That’s probably good, that’s probably . . . [ad
dressing P] Do you think so? I’m saying that’s probably good and
that’s like your work, right?
PROGRAMMER P: Right, I don’t mind doing that.

Similar consideration was being shown as the demonstration drew closer:

PROGRAMMER P: You two [E and C] need to make sure that you
both understand how the X/Y is being split into two, and you [E]
probably need to impart some knowledge to C as to how you like
to Y stuff.
PROGRAMMER C: He’s imparted that, such knowledge, and I’m
currently trying to implement it.
PROGRAMMER P: Wonderful, wonderful. Wunderbar. That’s good.

Finally, in the last week the Producer advised the programmers to help
one another using a self-deprecatory example:

PROGRAMMER P: If I was stuck on some bug, especially if it had
to do with some other part of the program, I’d go get the person

www.manaraa.com

66 I&C/Playpens for Mind Children

who was involved.. . . So don’t hesitate to work in pairs. Sometimes
with the transformation stuff I really screwed up your stuff. Boy I
messed up scales for a week once.

As is the case in any team effort where tasks must be parceled out,
programmers’ personal identification with their individual assignments
can become a liability to the team effort as a whole if it leads to ma
nipulation of team resources for individual purposes. This played itself
out overtly here in the form of an apparent shift in power toward the
end of the project, particularly during its last month, when the team
was fully absorbed with integrating the parts of the program and pre
paring it for presentation. Through the first two and a half months the
meetings were clearly directed by the Producer, whose efforts to keep
the team on track as far as the process was concerned were reasonably
successful and whose enthusiasm and good humor kept the meetings
moving, even when they did not go as he wished. But once the coding
task became serious, the Technical Director, who had not taken the lead
up to that point and had been nearly silent in Boss meetings, moved
into overt control of the meetings and began to attempt to exert the
authority to make final decisions that the SE model would have granted
him. Although a careful reading of the transcripts shows that the other
members of the team tended to disagree with the Technical Director’s
decisions and even apparently to ignore them, no serious degree of dis
agreement emerged in the meetings.

The final interviews with team participants, however, told another
story. The Technical Director was seen by the other team members as
pursuing his own goals, and they all resented it. But the way this was
expressed—and presumably experienced—was in terms of a sort of
proxy battle of the participants’ program parts. The Producer and
Programmer E were particularly condemnatory when the Technical
Director made changes to some of the program segments initially as
signed to the Producer, segments on which all the others depended and
changes that they saw as benefiting the Technical Director’s program
segment at the expense of the other members’ work. Interestingly, al
though elsewhere in the interview the Producer portrayed the group as
united in opposition to the Technical Director during the period of his
dominance, here he was rather reticent, perhaps because he also saw
himself as at fault:

PROGRAMMER P: So, T at one time was impatient and took some
of the database functions over that I was going to implement, and

www.manaraa.com

67

he implemented them, or he even altered some of the ones that
I had to make them work better with his code. Then they didn’t
work well with anyone else’s. So, it was when people pretty much
stepped out of their bounds. . . . When T implemented X and Y,
which were fairly complicated things, I worked on those some and
problems resulted from it because he understood them better
than me.

The problem dominated Programmer E’s interview, as he returned
to it several times with more and more emphasis on ownership with
each repetition:

PROGRAMMER E: Somebody had written a lot of code, and then
another person went in it, and then changed it. . . . Made massive
changes. And, um, broke [some of the] things . . . the other person
had done. And, um, he hadn’t asked the other person if he could
go in. . . . [A] 11 of a sudden somebody comes in and changes it
out from under his feet. And then he comes in to work, condnue
working on his code, and his code isn’t there anymore. There’s
somebody else’s code.

Programmer E portrayed the conflict as a struggle between the Producer
and Technical Director; interestingly, he blamed the Technical Director
for carrying out what was precisely his assigned task: exercising au
thority over technical matters. Programmer E portrayed himself and
Programmer C almost as standing on the sidelines watching the strug
gle. Programmer C, on the other hand, made almost nothing of the
struggle, remembering only the user interface issues that interested him
in particular:

PROGRAMMER C: We had a few conflicts just over user interface
issues because, like T thought that this was inconsistent with this
other user interface thing, or he thought this should be this way,
and that other tool should be modified to fit his favorite method,
and that was sort of a drag, but I think we all, he compromised
most of the things.

There were clearly many aspects of this struggle that had to do with per
sonal relationships, which in a very real sense were expressed through
the eventual shape that the integrated program took. The particularities
are not so important here as the return to the notion that the program

www.manaraa.com

68 I&C/Playpens for Mind Children

or program segment is a (perhaps relatively innocent) agent in a social
context, and its behavior is used by programmers as an index to the in
tentions and preferences of the programmer who wrote it. Clearly there
is a tacit etiquette to the ownership of program code in team projects,
which programmers transgress at their social peril: you may not alter the
code of a colleague without his or her permission, just as it is not accept
able to discipline another person’s child.56

The issue of ownership brings us back to the question of the program
mers’ being separated from the product of their labor. The course the
programmers were taking required them to sign over ownership of their
program to the Client at the outset, but it is especially interesting that
the Boss felt called upon to discuss this issue with the programmers in
their last formal meeting with him, as they delightedly envisioned them
selves doing further work on the program after the course was over:

BOSS: One of the points of having good implementation docu
mentation for follow-on is that this project has a life of its own after
the end of the course, whether you’re involved in it or somebody
else is involved in it. . . . I mean I think this one will have a life of
its own.
PROGRAMMER P: Yeah, this one definitely will.
[The programmers mention numerous features they dream of
adding, and the Boss urges them simply to add a “wish list” section
to the Implementation Manual.]
BOSS: . . . Because these things, especially something like this, is
never finished and needs a . . . It’s a vehicle for experimentation
and future investigation, so it needs to be able to continue to grow
in that way. . . .
[Programmer P indicates that he hopes to do official work on it in
the laboratory.]
BOSS: . . . Of course there’s nothing wrong with the Client con
tracting with the people who developed i t . . . but when it ends as a
[class] project its future becomes up to the Client.

The discussion here further emphasizes the extent to which the pro
grammers on this project enjoyed an unusual relationship to their
program based upon their connection with the laboratory. As the mat
ter developed, all four of the programmers did additional work on the
program to prepare it for demonstration at the computer conference
a month after the course was over, three of the four did some further
work on it, and one continued to work on it for several more years.

www.manaraa.com

69

In the follow-up interviews, the programmers were specifically
asked about their thoughts with reference to the ownership issue. The
Producer’s take on this was an interesting example of mixed feelings, in
which the partially assimilated SE model was paired with a more plan
gent theme of separation:

PROGRAMMER P: I’ve learned that it’s nice to be able to say, yeah,
it’s mine, but then you have to support it. . . . [I] t’s good not to be
tied to it. Because I still get the recognition. . . . The equipment
we work with . . . we’re talking about tens of thousands of dollars,
up to like a million dollars. . . . You kind of donate the idea to the
people who gave you, who loaned you the equipment, but still it’s
frustrating, as a programmer to come up with some new innova
tive thing. . . . You created it, you would like to be able to control
what gets done to it, what gets added to it or removed from it, who
it’s given to and sold to, how it’s integrated into some other prod
uct. . . . I may see somebody really, in my opinion messing up the
code, now it’s so disorganized and I’m so mad, all our hard work
has gone to waste.. . . I got a grade, I got some credits, and they got
a program. So, it’s like a deal.

In the response of the Technical Director can be seen the theme of the
loss of the program’s theory as it continued to evolve without him:

PROGRAMMER T: At the beginning of the summer it was still, you
know, I knew how things worked well. . . . I know . . . again how
things work pretty well, but, uh, when I first started working on the
stuff for this project [to adapt the program for a new machine] a
lot of stuff had changed while I was . . . while I had been ignoring
it. . . . Um, C had added a bunch of things . . . and it wasn’t quite
the program I left.

Programmer C was still working on the program when he was inter
viewed and was in the process of understanding the parts of the program
that he did not write:

PROGRAMMER C: But it’s really sort of my baby now, I think. I
mean, most of the code is not mine and it’s not like I can claim
to even understand it, much less have written it, I mean, there are
a lot of things where, I mean I was really worried about finding
some of these bugs that cropped up after it was ported to [the new
machine]. [S]ome things just broke and I was like, it’s going to be

www.manaraa.com

70 I&C/Playpens for Mind Children

impossible for me to find those bugs, I don’t even know how this
stuff works, but it turned out to be not that hard.

Yet it was “not that hard” precisely because he had been part of the pro
cess that built the program’s theory along with its code. And it is clear
that the pride of ownership in these mind children lingers. In prepara
tion for the work reported in this article I was given a demonstration
of the program by one of the programmers, not then working on it,
who dutifully showed me all its major features. When in trying it out I
accidentally failed to make more than perfunctory use of what I later
realized was the central feature he had programmed, he made a point
of demonstrating all the program’s capabilities.

Postscript

Naur has argued that there is a need to recognize this social and
practical connection between the programmer and the program and
to incorporate it into the treatment of programmers at work: “On the
Theory Building View the primary result of the programming activity is
the theory held by the programmers. Since this theory by its very nature
is part of the mental possession of each programmer, it follows that the
notion of the programmer as an easily replaceable component in the
program production activity has to be abandoned. Instead the program
mer must be regarded as a responsible developer and manager of the
activity in which the computer is a part.”57 Although Kraft’s observations
regarding the deskilling of programmers have been contradicted both
by the fortunes of SE in general and by the observations here that have
demonstrated the irreducible connections between programmers and
their work, it is likely that significant reform in the understanding of
the programming activity will be necessary before computer program
mers can be removed from the demonized category of a management
tool or the demon-ridden category of a wielder of SE silver bullets.
The movement toward participatory design of software in Europe with
which Naur was connected has aimed at an explicitly liberatory appli
cation of computer program design and the talents of programmers
to the improvement of working conditions in industry.58 An indication
of its emerging influence in the United States around the time of the
observed programming project can be seen in the appearance of a pa
per on this topic in the October 1993 Communications of the Association
for Computing Machinery devoted to orchestrating project organization
and management.59

www.manaraa.com

71

Only a little later an even more radical answer to this evergreen crisis
in program ming emerged. In the spirit of participatory design and built
on top of many of the program m ing principles that em erged counter
to strict software engineering disciplines, an approach to program ming
project practice billing itself as new em erged as “lightweight” or “agile”
program ming around the late 1990s and especially after the turn of the
century. N urtured in small companies where fast-evolving software prod
ucts were created and at a time of economic precariousness, its purpose
was to cut through heavily structured program production processes, to
recognize that the production environm ent was innately uncertain, and
to restore the enjoyment of and pride in program ming practice.

The various versions of this m ethod all adhere to the few points of
the Agile Manifesto, which states that the adherents value individuals
and interactions over processes and tools (including features like team
self-organization, motivation, collocation of team members, and pair
program ming); working software over comprehensive docum entation
(software dem onstrations and code are considered to be better rep
resentations of the software product than docum entation); customer
collaboration over contract negotiation (continuous involvement of cus
tomers in the full process of development); and responding to change
over following a plan (recognizing the volatility of com puter environ
ments and business plans calls for a continuous development mindset) ,60

The two leading representatives of this method, Scrum, directed
toward project managem ent, and Extreme Programming, directed to
ward program m ing practice, agree on most practices and emphasize
that m ethods used must be simple—like extrem e sports, they ironically
attem pt to strip away layers of technology. Depending significantly on
program m ing tools and a versioning repository for the code that is cre
ated, they instantiate the rest of the practice in physical form: customer
“stories” (use cases) and the tasks generated by the team to respond to
them are written by hand on cards and posted on a wall; regular m eet
ings make use of a whiteboard for planning; program m ing teams work
in a single room on tables pushed together; actual program ming takes
place carried out by pairs of programmers at shared machines. Large
program m ing tasks are broken into segments based on user stories
and tasks developed by the program ming team from the stories, to be
tackled iteratively until completed in what Scrum calls “sprints” of at
most a few weeks. Team members m eet daily before beginning work in
the same room and working in pairs; tests for the functioning of code
are written before or along with code segments, which are always tested
before being committed to the code repository; the practice calls for the

www.manaraa.com

72 I&C/Playpens for Mind Children

autom ation of testing such that as the code grows, incorporating frag
ments from separate pairs of programmers, the whole of the codebase is
tested with each new addition so that when the end is reached there are
no surprises.61

There is m uch more to agile program ming than this brief outline
can offer, but it is enough to suggest that the approach has m uch in
com m on with all working program m ers’ experience of “cutting code,”
as we have seen in Brooks’s and N aur’s respective ideas as well as in the
actual observation of one capable program m ing team, stretching thus
from the 1960s to the late 1990s. The changes that took place over this
time period were dependent on hardware and software development;
the assignment to computers of both the deep infrastructure of power
(defense, banking) and the pervasive infrastructure of information
appliances (shopping, entertainm ent); and a process of professionaliza
tion for program mers themselves. But it seems that, as Brooks suggested
and as agile program m ing reaffirms, the central arcana of program
ming have always stemmed from the same problem: that of making
activity from uncertainty. As Naur argued and agile program m ing also
affirms, this process must be em bedded in social, material, and techno
logical settings that both help constitute the process and are changed
by it. The playpens of the early engineering of software have become
the integrated program m ing environments of agile teams, but the mind
children are still born in social practice and constitute expressive and
m eaningful behavior that contributes to the program m ing process.
It remains to be seen whether group ownership of code as advocated
by agile program ming and ingrained in its practices will prove to be
a chimera.

N otes

This study makes use of data gathered as part of a larger study funded by
National Science Foundation Grant No. IRI-9015443 (John B. Smith, Principal
Investigator; F. Donelson Smith, Co-Principal Investigator). Unattributed
quotations presented in the article are taken from transcripts of the activities
of a student programming team working on a major project and their faculty
mentors. I would like to thank Dorothy Holland, John B. Smith, and Dana Kay
Smith for providing access to these data; James R. Reeves, Anne Larme, Carole
Cain, and several anonymous transcribers for their work on the project; and
the programmers themselves for their good-humored cooperation in being ob
served. The title of the article refers to the literal embodiment of thought as
offspring in Hans Moravec’s robotic vision in Mind Children: The Future of Robot
and Human Intelligence (Cambridge, MA: Harvard University Press, 1988) and to
the “playpens” (private files) organized by W. R. Crowley for programmers to

www.manaraa.com

73

use for their own work within the publicly shared program libraries on the IBM
360 system programming project: see Frederick P. Brooks Jr., The Mythical Man-
Month: Essays on Software Engineering (New York: Addison-Wesley, 1975), 133; and
Brooks, e-mail message to author, December 14, 1993.

1. Lawrence Lessig, Code and Other Laws of Cyberspace (New York: Random
House, 1999).

2. Nathan Ensmenger, The Computer Boys Take Over: Computers, Programmers,
and the Politics of Technical Expertise (Cambridge, MA: MIT Press, 2011).

3. Dorothy Holland, James R. Reeves, and Anne Larme, “The Constitution
of Intellectual Work by Programming Teams,” in TextLab/Collaboratory Report
TR92-013 (Chapel Hill: University of North Carolina Department of Computer
Science, 1992).

4. Philip Kraft, Programmers and Managers: The Routinization of Computer Pro
gramming in the United States (New York: Springer, 1977), 22. Kraft’s monograph,
although impressive in a field that he accurately evaluated as being totally
dominated by management discourse, is marred by a significant lack of under
standing of both computer programming as a process and the tools it uses. He
claims, for example, that applications programmers using high-level languages
like PL/1 “need only rudimentary programming skills compared to those of the
small number of software specialists who designed the languages they use” (28).
In fact, the so-called third-generation programming languages, of which PL/1
was one of the early ones, require no more “rudimentary” programming skills
than the low-level assembly languages and machine languages they replaced;
they permit more powerfully direct expression of logical complexity because
they are more abstract. Not only was Kraft’s example, PL/1, one of the most
complex programming languages ever devised, but one of the applications for
which it was used was systems programming, certainly the most complex of pro
gramming tasks. The complexity of a problem cannot be determined in any
simple way by the apparent simplicity of the tools used to solve it.

5. Harry Braverman, Labor and Monopoly Capital (New York: Monthly Review
Press, 1974); David F. Noble, America by Design: Science, Technology and the Rise of
Corporate Capitalism (New York: Knopf, 1977).

6. “Programmers thus persist in being something of an anomaly. . . . [T]hey
are employees, but they are in a position to control much of how they will go
about doing their programs . . . and to some extent even the form the final
product will take” (Kraft, Programmers and Managers, 62). Compare these state
ments from a recent management-centered software engineering text: “Under
time pressure to get a working system, you can use any implementation deci
sion that meets the specification. This is one approach to prototyping: design
module interfaces carefully, then use any implementation with the correct func
tionality, ignoring performance and capacity requirements,” and further: “The
problem [with defining requirements in advance] is that computers are such
flexible tools that we often try to get them to do things no one has tried to do
before. This often means we do not know in advance what the software should
do” (David Alex Lamb, Software Engineering: Planning for Change [New York:
Prentice-Hall, 1988], 101, 211).

7. Philip Kraft, “The Industrialization of Computer Programming: From
Programming to ‘Software Production,’” in Case Studies on the Labor Process, ed.
Andrew Zimbalist (New York: Monthly Review Press, 1979), 1-17.

www.manaraa.com

74 I&C/Playpens for Mind Children

8. Nathan Ensmenger and William Aspray, “Software as Labor Process,” in
Mapping the History of Computing: Software Issues, ed. U. Hashagen, R. Keil-Slawik,
and A. Norberg (New York: Springer-Verlag, 2002), 139-66.

9. Bruce Berman, “The Computer Metaphor: Bureaucratizing the Mind,”
Science as Culture 7 (1989): 7-42. Artificial intelligence is another field that pro
duced a great deal of popular fanfare, at least pardy due to the outrageous
claims made by the earliest practitioners, claims that have not been followed
up by much in the way of accomplishment. Its discourse, that of the computer
model for the mind, has had much greater success; see Sherry Turkle, The Second
Self: Computers and the Human Spirit (New York: Simon and Schuster, 1984);
and, more recentiy, Paul M. Churchland, The Engine of Reason, the Seat of the Soul
(Cambridge, MA: MIT Press, 1995).

10. As late as 2002, when the agile programming bandwagon had begun to
overtake other models in the context of OOP practice and commoditized pro
gramming products, Kraft was still warning against management control over
development practice while admitting that programmer resistance was still
a force to be reckoned with. See Jacob N0rbjerg and Philip Kraft, “Software
Practice Is Social Practice,” in Social Theory—Software Practice, ed. Yvonne
Dittrich, Christiane Floyd, and Ralf Klischewski (Cambridge, MA: MIT Press,
2002), 205-22. Further, the routinization theory still argued by Norbjerg and
Kraft, especially for offshored programming shops, has been rejected in con
temporary studies. See, for example, P. Vigneswarna Ilavarasan and Arun Kumar
Sharma, “Is Software Work Routinized? Some Empirical Observations from
Indian Software Industry,” Journal of Systems and Software 66 (2003): 1-6.

11. Bureau of Labor Statistics, Occupational Outlook Handbook, 2010-2011
Edition, http://www.bls.gov/oco/ocos303.htm; the latest information on wages
can also be accessed from this location.

12. See Berman, “Computer Metaphor”; this critique, still repeating Kraft’s
arguments, completely ignored the replacement of the central control aspect of
the mainframe computer model and the reskilling of computer users through
the supply of autonomous desktop computers to replace terminals as all com
puting became increasingly decentralized.

13. Bruce I. Blum, Software Engineering: A Holistic View (New York: Oxford
University Press, 1992), 28-29.

14. In this quotation from the observed SE course, the professor advised
students to consult the paper by David Parnas and Paul Clements, “A Rational
Design Process: How and Why to Fake It,” IEEE Transactions on Software Engi
neering, SE 12, no. 2 (1986): 251-57.

15. Dorothy Holland and James R. Reeves, “Creativity and Rationalizability:
Beasts in the Tar Pits of Software Engineering,” paper presented at the annual
meeting of the Society for Science and Literature, Adanta, 1992 (photocopy in
possession of the author).

16. For academic hacker culture, see James Wallace and Jim Erickson, Hard
Drive: Bill Gates and the Making of the Microsoft Empire (New York: Wiley, 1992);
Turkle, Second Self, 196-238; Steven Levy, Hackers (New York: Anchor, 1984).
Examples abound of the kinds of symbolic rewards that are offered to computer
industry programmers: inside the plastic case of the original Macintosh pro
duced by Apple Computer, molded into the plastic itself, were the names of all
the engineers and programmers who had worked on the project; and if the user

www.manaraa.com

75

of Microsoft’s Windows 3.1 software knew just what keys to press (the sequence
was formally undocumented but was made public through numerous articles in
the computer press), a “gang screen” appeared, listing the programmers who
worked on the software and even jokes about the process, recognizable to their
peers if not to the public.

17. Wallace and Erickson, Hard Drive, 385. The manager in question, Bob
Metcalfe, was himself a primordial hacker, so he is not inclined to condemn pro
grammers because he comes from the managerial side of the fence.

18. I refer to Brooks’s work here in detail for three reasons: it reflects what
has proved to be seen within the field of computer science as the most sane view
of software engineering, based strongly in practice; it continues to be cited in
reading lists put together by exponents of new programming models; and the
observational data used in this study came from a software engineering class
originally designed by Brooks and grounded on his evolving conception of
the field.

19. Brooks, The Mythical Man-Month, 9-10.
20. Part of the reason for this is that many expert programmers spend time

with fantasy computer gaming set in a “swords and sorcery” world, but it has
entered into the common parlance of the programmer’s culture totally apart
from this usage. A well-known columnist writing on obscure programming tricks
in the magazine UNIX World entitles her column Wizard’s Grab-bag, and a well-
known account of the emergence of the Internet by Katie Hafner and Matthew
Lyon is entitled Where Wizards Stay Up Late: The Origins of the Internet (New York:
Simon and Schuster, 1996).

21. Frederick P. Brooks Jr., “No Silver Bullet: Essence and Accidents of
Software Engineering,” IEEE Computer 20, no. 4 (1987): 10-19, quote on 10; I
quote from this reprint.

22. Frederick P. Brooks Jr., “No Silver Bullet: Essence and Accident in
Software Engineering,” in Proceedings of the IFIP Tenth World Computing Conference
(1986), 1069-76. It is not obvious who the editors of Computer meant the young
woman to symbolize, for the only victim Brooks’s article mentions explicitly is
the “non-technical manager,” whose vision of “missed schedules, blown budgets,
and flawed products” leads to “desperate cries for a silver bullet.” Brooks limns
these managers as having pursued this quest in vain through the promises of SE.

23. Brooks, “No Silver Bullet” (1987), 11-12.
24. Ibid., 16-18.
25. Howard Rheingold, Virtual Reality (New York: Summit Books, 1991), 39;

Frederick P. Brooks Jr., “The Computer Scientist as Toolsmith II,” Communications
of the Association for Computing Machinery 39, no. 3 (1996): 61-68.

26. This was also an important theme in Mythical Man-Month and one of
Brooks’s main reasons for arguing for small programming teams to cut down
on the problem of communication (17-18). This “communication bandwidth”
problem has been a major concern of cognitive scientists like Newell and Simon
studying human problem solving. See John B. Smith, “Collective Intelligence
in Computer-Based Collaboration,” in TexiLab/Collaboratory Report TR92-012
(Chapel Hill: University of North Carolina Department of Computer Science,
1992), chap. 4. It has been internalized as a major theme of programmer inter
action at the Microsoft Corporation by its founder, Bill Gates. See Wallace and
Erickson, Hard Drive, 303.

www.manaraa.com

76 I&C/ Playpens for Mind Children

27. Peter Naur, “Programming as Theory Building,” in Computing: A Human
Activity (1985; Reading, MA: Addison-Wesley, 1992), 37-49.

28. Andrew Pickering, The Mangle of Practice: Time, Agency, and Science
(Chicago: University of Chicago Press, 1995), 162n6, has pointed to similar
developments in the 1950s in Britain in work on “socio-technical systems” and
“autonomous groups.”

29. Naur, “Programming as Theory Building,” 40.
30. Ibid., 41.
31. Ibid., 44. “All repairs tend to destroy the structure, to increase the en

tropy and disorder of the system. . . . Sooner or later the fixing ceases to gain any
ground. Each forward step is matched by a backward one. Although in principle
usable forever, the system has worn out as a base for progress. . . . A brand-new,
from-the-ground-up redesign is necessary” (Brooks, Mythical Man-Month, 122-
23). Note that Brooks assumes that the maintenance staff will be different from
and probablyjunior to the design staff.

32. This business terminology for the roles was used throughout the course
and provided parameters, in the students’ case, by which their grade was es
tablished. Adherence to the roles was theoretically reinforced by the fact that
the team grade was dependent upon the members’ fulfilling their roles, while
individuals were called upon to grade each other for the quality of their partici
pation. The importance of these reinforcements to the outcome was analyzed by
Holland, Reeves, and Larme, “Constitution of Intellectual Work,” and was not
deemed determinative in every case. The course is still taught.

33. References to the four programmers in the team are not initials; the
Producer is referred to as Programmer P, the Technical Director as Programmer
T, and the remaining two programmers as Programmer C and Programmer E.
In the quoted material an effort will be made to remove identifying information,
including clues to the details of the project, so sometimes it will be necessary to
substitute or replace specific identifiable references to programming constructs.

34. The purpose of the study was to understand situated cognition in
group practice to support theory building for computer-supported coopera
tive work; see Holland, Reeves, and Larme, “Constitution of Intellectual Work.”
Interestingly, the anthropologists observed that much of the informal documen
tation created during meetings was ephemeral; for example, it was created on
whiteboards or was personal, recorded in notebooks. It should also be noted
that the technological environment was impoverished by today’s standards; stu
dents did not have laptop computers or wireless access to the Internet (which
did not exist as we know it, though the students did have e-mail). Ironically,
this situation encouraged the use of physical objects for communication and
compelled the students to gather in labs where computers were available for
joint programming sessions, both of which would become important features of
more recent agile programming methods.

35. Bill Curtis, “By the Way, Did Anyone Study Any Real Programmers?,”
in Empirical Studies of Programmers, ed. Elliott Soloway and Sitharama Iyengar
(Norwood, NJ: Ablex, 1986), 256-62.

36. Diane B. Walz, Joyce J. Elam, and Bill Curtis, “Inside a Software Design
Team: Knowledge Acquisition, Sharing, and Integration,” Communications of
the Association for Computing Machinery 36, no. 10 (1993): 62-77; also Curtis, “By
the Way.”

www.manaraa.com

77

37. Holland, Reeves, and Larme, “Constitution of Intellectual Work”;
Holland and Reeves, “Creativity and Rationalizability”; and Holland and Reeves,
“Activity Theory and the View from Somewhere: Team Perspectives on the
Intellectual Work of Programming,” in Contexts and Consciousness: Activity Theory
and Human Computer Interaction, ed. Bonnie Nardi (Cambridge, MA: MIT Press,
1994), 257-81.

38. The leading position of the laboratory in question made the program
mers certain that this was the case.

39. All four members of the team are still involved in computer program
ming in some way: one is an academic, one is a researcher, one is a principal in a
software company, and one is an independent programmer.

40. Brooks, Mythical Man-Month, 20.
41. Compare Lamb, Software Engineering, 35.
42. Holland, Reeves, and Larme, “Constitution of Intellectual Work.”
43. Holland and Reeves, “Activity Theory.” This free ideological space might

be conceived in terms of Vygotsky’s “zone of proximal development,” the space
between what learners are capable of by themselves and what they can accom
plish with guidance. See James V. Wertsch, Voices of the Mind: A Sociocultural
Approach to Mediated Action (Cambridge, MA: Harvard University Press, 1991).
This is especially pertinent since the activities observed took place in a pedagog
ical setting. In the case of the programming team studied here, however, there
was so little effort made to internalize the SE model, in fact, such obvious effort
was made to resist some aspects of it, that it is clear that this space remained con
tested. The programmers had accumulated enough self-confidence in their own
skills to allow themselves to resist the authoritarian discourse of SE and even to
leverage themselves out of an obligation to pay serious attention to it.

44. Walz, Elam, and Curtis, “Inside a Software Design Team.”
45. Ibid., 68.
46. Holland and Reeves, “Activity Theory.”
47. Smith, “Collective Intelligence.”
48. Many of these issues have nearly the status of religious conviction, so

these kinds of discussions are not as trivial as they seem. A programmer’s opin
ions about certain key texts in the field and certain programming practices
will be taken by his peers as shorthand for a whole range of expectations. See
Kelty’s analysis of the world of open-source programming for many examples:
Christopher Kelty, Two Bits: The Cultural Significance of Free Software (Durham,
NC: Duke University Press, 2008).

49. This programmer’s preferences are important in that they signal the
beginning of a trend that would continue, in which programmers themselves
began to prefer graphical user interfaces for their work.

50. This is one reason why programming is being rapidly adopted for other
engineering tasks to provide for a means of simulating the task without actually
carrying it out physically. Another reason is that it saves money, but given the
leverage that the skill offers to those who have it, management may find that a
mixed blessing.

51. Holland and Reeves, “Creativity and Rationalizability.” For a more recent
treatment of the distribution of agency through the activity of “cutting code,”
see Adrian Mackenzie, Cutting Code: Software and Sociality (New York: Peter
Lang, 2006).

www.manaraa.com

78 I&C/Playpens for Mind Children

52. Brooks advises this: “Plan to throw one away; you will, anyhow” (Mythical
Man-Month, 116).

53. The instructor’s remark refers to a specific degree of computational com
plexity: NP-complete problems can be computationally solved, but not in any
reasonable length of time for large datasets. For a discussion of the problem, see
Michael P. Garey and David S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness (San Francisco: W. H. Freeman, 1979).

54. Turkle, Second Self. See Pickering, Mangle of Practice, for the notions of
the performativity of science and the material agency captured in human-
engineered artifacts. Programming practice can amount to a fluid dialectic
between programmer and program in the environment of machine and pro
gramming support software, reflecting Pickering’s “mangle” of resistance and
accommodation.

55. Holland and Reeves, “Creativity and Rationalizability.”
56. Interestingly, a recent article observed: “Within Microsoft, we have

found that when more people work on a binary, it has more failures” (Christian
Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premkumar
Devanbu, “Don’t Touch My Code! Examining the Effects of Ownership on
Software Quality,” in Proceedings of the 8th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on Foundations of Software
Engineering [2011]). The authors suggested that this fact came from the owner’s
better understanding of her own code and the notorious problem of commu
nicating on programming teams. Their proposed solution is to experiment
with changes in practice to include having “owners” of components do changes
suggested by others. This study was not carried out through observation of pro
grammers at work but entirely through examination of code fragment authors
on a specific program in a versioning repository, compared with defect reports
for that same program.

57. Naur, “Programming as Theory Building,” 47-48.
58. See Christiane Floyd, Heinz Zullighoven, Reinhard Budde, and Reinhard

Keil-Slawik, eds., Software Development and Reality Construction (Berlin: Springer-
Verlag, 1992); and Yvonne Dittrich, Christiane Floyd, and Ralf Klischewski, eds.,
Social Thinking—Software Practice (Cambridge, MA: MIT Press, 2002).

59. Karen Holtzblatt and Hugh Beyer, “Making Customer-Centered Design
Work for Teams,” Communications of the Association for Computing Machinery 36,
no. 10 (1993): 92-103.

60. A convenient source for the Agile Manifesto is at http://agilemanifesto
•org/.

61. Two significant guides to varieties of agile programming practice are Ken
Schwaber and Mike Beedle, Agile Software Development with Scrum (New York:
Prentice-Hall, 2001); and Kent Beck and Cynthia Andres, Extreme Programming
Explained: Embrace Change (Boston: Addison-Wesley, 2005).

www.manaraa.com

Copyright of Information & Culture is the property of University of Texas Press and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

